Marine Phytoplankton

Phytoplankton are microscopic marine plants that form the base of ocean food webs. Acidification may have varied effects, both positive and negative, on different species.

01

Species Role

Like land plants, phytoplankton use sunlight to convert carbon dioxide (CO2) and water into organic carbon and oxygen. CO2 is therefore an essential nutrient for phytoplankton and higher concentrations of CO2 in the surface ocean have the potential to support higher rates of phytoplankton photosynthesis and growth.

However, since the pH of water drops (reflecting an increase in acidity) as CO2 rises, the positive effects of higher CO2 may be offset by negative effects of low pH.

atlanticbloom_amo_2023110_lrg

References

Bach, L. T., Riebesell, U., & Schulz, K. G. (2011). Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56(6), 2040–2050. https://doi.org/10.4319/lo.2011.56.6.2040

Eggers, S. L., Lewandowska, A. M., Barcelos E Ramos, J., Blanco‐Ameijeiras, S., Gallo, F., & Matthiessen, B. (2014). Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology, 20(3), 713–723. https://doi.org/10.1111/gcb.12421

Fu, F., Place, A., Garcia, N., & Hutchins, D. (2010). CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquatic Microbial Ecology, 59, 55–65. https://doi.org/10.3354/ame01396

Fu, F., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. A. (2007). Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology, 43(3), 485–496. https://doi.org/10.1111/j.1529-8817.2007.00355.x

Goldman, J. A. L., Bender, M. L., & Morel, F. M. M. (2017). The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii. Photosynthesis Research, 132(1), 83–93. https://doi.org/10.1007/s11120-016-0330-2

Hong, H., Shen, R., Zhang, F., Wen, Z., Chang, S., Lin, W., Kranz, S. A., Luo, Y.-W., Kao, S.-J., Morel, F. M. M., & Shi, D. (2017). The complex effects of ocean acidification on the prominent N2 -fixing cyanobacterium Trichodesmium. Science, 356(6337), 527–531. https://doi.org/10.1126/science.aal2981

Hoppe, C. J. M., Hassler, C. S., Payne, C. D., Tortell, P. D., Rost, B., & Trimborn, S. (2013). Iron Limitation Modulates Ocean Acidification Effects on Southern Ocean Phytoplankton Communities. PLoS ONE, 8(11), e79890. https://doi.org/10.1371/journal.pone.0079890

Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., & Jang, M.-C. (2006). The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4), 1629–1636. https://doi.org/10.4319/lo.2006.51.4.1629

King, A., Jenkins, B., Wallace, J., Liu, Y., Wikfors, G., Milke, L., & Meseck, S. (2015). Effects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton species. Marine Ecology Progress Series, 537, 59–69. https://doi.org/10.3354/meps11458

Passow, U., & Laws, E. A. (2015). Ocean acidification as one of multiple stressors: Growth response of Thalassiosira weissflogii (diatom) under temperature and light stress. Marine Ecology Progress Series, 541, 75–90. https://doi.org/10.3354/meps11541

Shi, D., Xu, Y., Hopkinson, B. M., & Morel, F. M. M. (2010). Effect of Ocean Acidification on Iron Availability to Marine Phytoplankton. Science, 327(5966), 676–679. https://doi.org/10.1126/science.1183517

Tatters, A. O., Roleda, M. Y., Schnetzer, A., Fu, F., Hurd, C. L., Boyd, P. W., Caron, D. A., Lie, A. A. Y., Hoffmann, L. J., & Hutchins, D. A. (2013). Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1627), 20120437. https://doi.org/10.1098/rstb.2012.0437

Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., & Finkel, Z. V. (2014). Ocean acidification enhances the growth rate of larger diatoms. Limnology and Oceanography, 59(3), 1027–1034. https://doi.org/10.4319/lo.2014.59.3.1027

Xu, Y., Shi, D., Aristilde, L., & Morel, F. M. M. (2012). The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: Possible role of weak complexes. Limnology and Oceanography, 57(1), 293–304. https://doi.org/10.4319/lo.2012.57.1.0293

logo 1logo 1

The Mid-Atlantic Coastal Acidification Network. All Rights Reserved.

Site By3Lane Marketing

Accessibility