Finfish

Mid-Atlantic finfish are essential to marine ecosystems and economies alike; while research is ongoing, current findings suggest some species may be sensitive to acidification, especially during early life stages.

01

Studying Mid-Atlantic Finfish

To date (2023), only 24 fish species of the Mid-Atlantic, including about a dozen of commercial or recreational importance, have been studied for their response and sensitivity to ocean and coastal acidification. Most studies are based on laboratory experimentation where the earliest, most sensitive life-stages of fish (gametes, embryos, larvae, and young juveniles) are exposed to different levels of carbon dioxide (CO2) that are intended to mimic future oceanic and coastal conditions.

This is a young yet very active research front with studies becoming ever more realistic and sophisticated.

Silversides Schooling Above Black Sea Bass photo Credit Jacob Snyder

References

Baumann, H., Talmage, S.C., and Gobler, C.J. 2012. Reduced early life growth and survival in a fish as a direct response to elevated CO2 levels. Nature Climate Change 2:38-4.

Chambers, RC, Candelmo, AC, Habeck, EA, Poach, ME, Wieczorek, D, Cooper, KR, Greenfield, CE, and Phelan, BA. 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences, 11, 1613-1626, doi:10.5194/bg-11-1613-2014.

Davidson MI, Targett TE, Grecay PA. 2016. Evaluating the effects of diel-cycling hypoxia and pH on growth and survival of juvenile summer flounder Paralichthys dentatus. Marine Ecology Progress Series 556:223-235. https://doi.org/10.3354/meps11817.

Depasquale, E, Baumann, H, and Gobler, CJ. 2015. Variation in early life stage vulnerability among Northwest Atlantic estuarine forage fish to ocean acidification and low oxygen. Marine Ecology Progress Series 523:145-156.

Lifavi DM, Targett TE, Grecay PA. 2017. Effects of diel-cycling hypoxia and acidification on juvenile weakfish Cynoscion regalis growth, survival, and activity. Marine Ecology Progress Series 564:163-174. https://doi.org/10.3354/meps11966.

Malvezzi, AJ, Murray, CM, Feldheim, KA, Dibattista, JD, Garant, D, Gobler, CJ, Chapman, DD, and Baumann, H. 2015. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evolutionary Applications 8:352-362.

Miller, SH, Breitburg, DL, Burrell, RB and Keppel, AG. 2016. Acidification increases sensitivity to hypoxia in important forage fishes. Marine Ecology Progress Series, 549:1-8. http://dx.doi.org/10.3354/meps11695.

Murray, CM, Malvezzi, A, Gobler, CJ, and Baumann, H. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504:1-11.

logo 1logo 1

The Mid-Atlantic Coastal Acidification Network. All Rights Reserved.

Site By3Lane Marketing

Accessibility