Deep-sea Corals

Corals like gorgonian sea fans and bamboo corals create vital deep-sea habitats; acidification impacts are still unclear, but are expected to be adverse.

01

Species Role

While most people think of shallow water reefs when they think of corals, the deep-sea hosts an expansive habitat of corals far beneath the surface. These cold-water coral reefs can support a diversity of life and form important fishery habitat and nursery grounds.

image2

References

Baco, A. R., Morgan, N., Roark, E. B., Silva, M., Shamberger, K. E., & Miller, K. (2017). Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific. Scientific Reports, 7(1), 5436. https://doi.org/10.1038/s41598-017-05492-w

Cairns, S. D. (2007). Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bulletin of Marine Science, 81(3), 311-322.

Fillinger, L., & Richter, C. (2013). Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH. PeerJ, 1, e194. https://doi.org/10.7717/peerj.194

Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500-505. https://doi.org/10.1016/j.cub.2014.12.022

Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R. 2006. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and the Environment 4:141-146. https://doi.org/10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2

Hennige, S. J., Wicks, L. C., Kamenos, N. A., Perna, G., Findlay, H. S., & Roberts, J. M. (2015). Hidden impacts of ocean acidification to live and dead coral framework. Proceedings of the Royal Society B: Biological Sciences, 282(1813), 20150990. https://doi.org/10.1098/rspb.2015.0990

Kurman, M. D., Gomez, C. E., Georgian, S. E., Lunden, J. J., & Cordes, E. E. (2017). Intra-specific variation reveals potential for adaptation to ocean acidification in a cold-water coral from the Gulf of Mexico. Frontiers in Marine Science, 4, 111. https://doi.org/10.3389/fmars.2017.00111

Raybaud, V., Tambutté, S., Ferrier-Pagès, C., Reynaud, S., Venn, A. A., Tambutté, É., Nival, P, and Allemand, D. (2017). Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification. Journal of Theoretical Biology, 424, 26-36. https://doi.org/10.1016/j.jtbi.2017.04.028

Roberts, J. M., Wheeler, A. J., & Freiwald, A. (2006). Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science, 312(5773), 543-547. https://doi.org/10.1126/science.1119861

Thresher, R., Tilbrook, B., Fallon, S., Wilson, N., & Adkins, J. (2011). Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Marine Ecology Progress Series, 442, 87–99. https://doi.org/10.3354/meps09400

logo 1logo 1

The Mid-Atlantic Coastal Acidification Network. All Rights Reserved.

Site By3Lane Marketing

Accessibility